Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38539762

RESUMO

A mirror subjected to a fast mechanical oscillation emits photons out of the quantum vacuum-a phenomenon known as the dynamical Casimir effect (DCE). The mirror is usually treated as an infinite metallic surface. Here, we show that, in realistic experimental conditions (mirror size and oscillation frequency), this assumption is inadequate and drastically overestimates the DCE radiation. Taking the opposite limit, we use instead the dipolar approximation to obtain a simpler and more realistic treatment of DCE for macroscopic bodies. Our approach is inspired by a microscopic theory of DCE, which is extended to the macroscopic realm by a suitable effective Hamiltonian description of moving anisotropic scatterers. We illustrate the benefits of our approach by considering the DCE from macroscopic bodies of different geometries.

2.
Phys Rev Lett ; 119(19): 193603, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29219533

RESUMO

The microscopic theory of superconductivity raised the disruptive idea that electrons couple through the elusive exchange of virtual phonons, overcoming the strong Coulomb repulsion to form Cooper pairs. Light is also known to interact with atomic vibrations, as, for example, in the Raman effect. We show that photon pairs exchange virtual vibrations in transparent media, leading to an effective photon-photon interaction identical to that for electrons in the BCS theory of superconductivity, in spite of the fact that photons are bosons. In this scenario, photons may exchange energy without matching a quantum of vibration of the medium. As a result, pair correlations for photons scattered away from the Raman resonances are expected to be enhanced. An experimental demonstration of this effect is provided here by time-correlated Raman measurements in different media. The experimental data confirm our theoretical interpretation of a photonic Cooper pairing, without the need for any fitting parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...